
Self-assembling DNA-caged particles: Nanoblocks for hierarchical self-assembly

Nicholas A. Licata1,2 and Alexei V. Tkachenko1

1Department of Physics and Michigan Center for Theoretical Physics, University of Michigan,
450 Church Street, Ann Arbor, Michigan 48109, USA

2Max Planck Institue for the Physics of Complex Systems, Nöthnitzerstrasse 38, D-01187 Dresden, Germany
�Received 29 July 2008; published 21 January 2009�

DNA is an ideal candidate to organize matter on the nanoscale, primarily due to the specificity and com-
plexity of DNA based interactions. Recent advances in this direction include the self-assembly of colloidal
crystals using DNA grafted particles. In this paper we theoretically study the self-assembly of DNA-caged
particles. These nanoblocks combine DNA grafted particles with more complicated purely DNA based con-
structs. Geometrically the nanoblock is a sphere �DNA grafted particle� inscribed inside a polyhedron �DNA
cage�. The faces of the DNA cage are open, and the edges are made from double stranded DNA. The cage
vertices are modified DNA junctions. We calculate the equilibriuim yield of self-assembled, tetrahedrally caged
particles, and discuss their stability with respect to alternative structures. The experimental feasability of the
method is discussed. To conclude we indicate the usefulness of DNA-caged particles as nanoblocks in a
hierarchical self-assembly strategy.
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I. INTRODUCTION

DNA is one of the most celebrated tools in the nano-
science toolbox. This approach was pioneered in the labora-
tory of N. Seeman, where some of the first schemes for
building nanostructures from specially engineered oligo-
nucleotide sequences were proposed. A number of objects
have been successfully constructed, including DNA cubes,
multiple armed DNA junctions, DNA crystals, and DNA
knots �1–4�. There have been several recent experimental
advances in this direction �5,6�, including the encapsulation
of a single molecule inside a DNA tetrahedron �7�. There has
also been a surge of interest in utilizing the specific interac-
tions of complementary single-stranded DNA �ssDNA� to
organize particles on the nanoscale. One recent advance in
this direction is the self-assembly of three dimensional body
centered cubic crystals from DNA grafted nanoparticles
�8,9�. Up until this point, most of the studies reported the
formation of small clusters or random aggregation of par-
ticles, as opposed to the self-assembly of ordered structures
�10–12�.

The potential complexity of DNA based interactions pro-
vides a means to design significantly more complicated
nanoblocks. In this paper we propose a method to self-
assemble DNA-caged particles �see Fig. 1�. These nanob-
locks are composite materials which are constructed by com-
bining DNA grafted nanoparticles with specially designed
DNA sequences. Geometrically the nanoblock is a sphere
�DNA grafted nanoparticle� inscribed inside of a polyhedron
�DNA cage�. The polyhedron faces are open, and the cage
edges are made of double-stranded DNA �dsDNA�. The cage
vertices are modified DNA junctions �13,14�. Each vertex of
the cage carries a unique ssDNA sequence available for hy-
bridization. This vertex “coloring” makes these nanoblocks
ideal candidates as building blocks for hierarchical self-
assembly strategies.

The plan for the paper is the following. We first introduce
of our self-assembly proposal. Details of the proposal are

discussed for a particular implementation in which the DNA
cage is a regular tetrahedron. We theoretically calculate the
melting profile for the DNA cage self-assembled around the
DNA grafted particle. We demonstrate an equilibrium regime
in which the DNA-caged particle is the dominant structure in
solution, and discuss its stability with respect to alternative
structures. We conclude by discussing how DNA-caged par-
ticles could be used as the building blocks in a hierarchical
self-assembly strategy.

II. SELF-ASSEMBLY PROPOSAL

In this section we discuss the details of our self-assembly
proposal. The proposal is to self-assemble DNA-caged par-
ticles by combining DNA grafted nanoparticles with rodlike
DNA linkers. There is only one type of particle, i.e., all of
the ssDNA grafted onto the nanoparticle surface have the
same nucleotide sequence. The rodlike DNA linkers are ds-
DNA, but each end of the rod terminates in a ssDNA se-
quence. The dsDNA rods can bend significantly when their
length L is comporable to the persistence length lp�50 nm

FIG. 1. �Color online� Graphical depiction of the scheme for
self-assembling DNA-caged particles. The cage edges are con-
structed from dsDNA rods with terminal ssDNA sequences on ei-
ther end.

PHYSICAL REVIEW E 79, 011404 �2009�

1539-3755/2009/79�1�/011404�8� ©2009 The American Physical Society011404-1

http://dx.doi.org/10.1103/PhysRevE.79.011404


for dsDNA �15�. In what follows we consider the case L
� lp and treat the dsDNA as rigid rods. There are n types of
rodlike DNA linkers, since the terminal ssDNA sequences on
each linker are unique. The particle and linkers are all of the
components necessary for the self-assembly proposal. The
number of types of linkers is determined by the cage archi-
tecture, in general there will be one type for each edge of the
cage. We now turn to discuss how the cage can be assembled
from the DNA linkers.

For the sake of concreteness we will consider a particular
implementation of this idea in which the DNA cage is a
regular tetrahedron. In this case there are n=6 types of DNA
rods, one for each edge of the tetrahedron.

These rods can be joined to assemble the cage in the
following manner. To construct each vertex of the tetrahe-
dron, four ssDNA sequences must be joined. Three of these
ssDNA sequences are the terminal ssDNA sequences of the
rodlike DNA linkers. The fourth ssDNA sequence comes
from the ssDNA grafted onto the particle surface, which
binds the particle to the cage. The DNA architecture that
accomplishes this task is known as a four arm DNA junction
�see Fig. 2�. These junctions have been studied extensively,
and the sequences can be designed so that the vertex is stable
�13,14,16�.

The problem is now to assign particular sequences to the
terminal ssDNA sequences of the DNA rods which result in
the desired tetrahedral cage, taking into account the proposed
vertex architecture. One such assignment is proposed below
in Fig. 3. We now provide an explanation of how Figs. 2 and
3 can be read together to understand the cage construction.

Examine vertex A in Fig. 3. We can see that rods R1, R4,
and R6 are joined together at this vertex. Let An denote the
nucleotide sequence which plays the role of arm n �see Fig.
2� in vertex A, where n� �1,2 ,3 ,4�. The sequence assign-
ments in the caption of Fig. 3 tell which rod provides each
arm of the DNA junction. For example, R1=A2−S−B2
means that rod R1 provides arm 2 of vertex A and arm 2 of
vertex B. For vertex A, rod R1 provides arm 2, R4 provides
arm 4, and R6 provides arm 3. Only arm 1 remains, which is
provided by the ssDNA grafted onto the particle. In addition,
since all of the ssDNA grafted onto the particle have the
same sequence, by performing this enumeration procedure
for each vertex we can see that the following four sequences
are identical: A1=B1=C1=D3.

Since it may be difficult �e.g., for steric reasons� to intro-
duce the particle into the fully assembled cage, we would
like for the particle to assist in the cage building process.
This has been explicitly taken into account in the sequence
designation process. Note that rod R4 cannot bind at vertex D
in the absence of the particle, since it hybridizes to arm 3 of
the vertex �which comes from the particle�.

With the basic framework in hand, the next task is to
determine the relative abundance of the various structures
that form in a solution of DNA linkers and DNA-grafted
nanoparticles. A similar type of analysis has been performed
in our related work on DNA-grafted nanoparticles �17,18�. In
the next section we calculate the equilibrium yield for a va-
riety of these structures. If the self-assembly process is ex-
perimentally feasible we should be able to demonstrate a
regime in which our nanoblock, a single particle surrounded
by a fully assembled DNA cage, is the dominant structure in
solution.

III. DNA CAGE MELTING

We first determine the melting profile for DNA cages in
the absence of the nanoparticle. By taking the proposed ver-
tex numbering scheme �see Fig. 3� into account, we can enu-
merate all of the possible DNA structures which can form in
solution �see Fig. 4�.

Let ci denote the concentration of linker Ri. In what fol-
lows co=1M is the standard reference concentration. In ad-
dition, we use natural units where the Boltzmann constant
kB=1. In equilibrium the chemical potential of the various
phases will be the same. The chemical potential has a con-
tribution from the entropy of dilution, and the effective hy-
bridization free energy for creating the the DNA connections
at the vertex. For example, consider the reaction in which
DNA linker rods R1 and R6 hybridize to form a dimer. Equili-
brating the chemical potentials yields the following equation:

arm 1

arm 2

arm 4

arm 3

FIG. 2. �Color online� The vertex architecture is a modified four
arm DNA junction. The arrowheads label the 3� end of the ssDNA
arms. Note that the portion of arm 1 which is normally complemen-
tary to arm 4 is missing. Hence the 3� end of arm 4 provides the
vertex with a unique “color,” i.e., a ssDNA sequence available for
hybridization.

C

A

B

D

R1 R4

R2

R6
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R3

FIG. 3. �Color online� The proposed sequence assignment to the
ssDNA ends of the DNA rods which self-assembles into the tetra-
hedral cage. If S denotes a dsDNA spacer, the sequence assignments
for the six rods are R1=A2−S−B2, R2=B4−S−C4, R3=C2−S−D2,
R4=A4−S−D4, R5=B3−S−D1, R6=A3−S−C3. The detailed struc-
ture of the vertex architecture �the circles in this diagram� is pre-
sented in Fig. 2.
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T ln� c1

co
	 + T ln� c6

co
	 = T ln� c16

co
	 + �16. �1�

Here �16 is the free energy for the formation of the dimer pair
from the two monomers. In this case �16 is simply the hy-
bridization free energy associated with joining rods R1 and
R6 together at vertex A. The resulting concentration of the
dimer c16 is then

c16 =
c1c6

co
exp�− �16

T
	 . �2�

The total concentration of dimers C̄2 is determined by con-
sidering all of the possible dimer varieties,

C̄2 = c16 + c46 + c15 + c25 + c26 + c36 + c35. �3�

The dimers can be considered freely jointed rigid rods, ow-
ing to the flexibility of the DNA junctions which constitute
the vertex.

In general the free energy �ij is equal to the hybridization
free energy �Gij =�Hij −T ln��Sij� for joining rods Ri and
Rj. These free energies will depend on the particular choice
of the DNA nucleotide sequences �Ai ,Bj ,Ck ,Dl�. In what
follows � denotes the average hybridization free energy 
�ij�.

The reasoning for the trimer structures is largely the same.
To write the hybridization free energies for the n-mers com-
pactly, we label them by the indices for the rods which con-
stitute the structure. For example, for the trimer composed of
rods R1, R2, and R5 the effective free energy is written �125.
Looking at Fig. 3, �125 can be decomposed into a sum of
hybridization free energies for joining two arms at a vertex,
i.e., �125=�15+�25. The same decomposition can be done for
all of the n-mers. We adopt the same notation for the con-
centration of the structures. The concentration of the trimer
c125 formed by the reaction R1+R2+R5 is

c125 =
c1c2c5

co
2 exp�− �125

T
	 . �4�

For some of the DNA structures there is one additional
complication. For any diagram which contains a closed loop,
we must calculate the change in configurational entropy as-
sociated with making the connection which closes the loop.
In these cases we calculate the overlap density cef f which
relates the effective hybridization free energy �̃ to the bare
hybridization free energy � �18,19�,

exp�− �̃

T
	 =

cef f

co
exp�− �

T
	 , �5�

cef f =
�P�r1,r�P�r2,r�d3r

��P�r,r��d3r�2 . �6�

Here P�r ,r�� is the probability distribution for the chain of
DNA linkers which starts at r� and ends at r. The canonical
example is the conversion of a trimer which is a chain of
three freely jointed links into a closed triangle. For rigid
DNA linkers each of length L the result is quite simple,

cef f =
1

8�L3 . �7�

Details for the calculation are provided in the Appendix.
Continuing the enumeration procedure for the tetramers,

5-mers, and 6-mer, we can write down expressions for the
concentration of all the DNA structures which can form in
the absence of the particle. Writing down the equations for
conservation of DNA linkers results in a system of six
coupled polynomial equations of order 6 in the concentra-
tions of monomers cj. Here cj

tot is the total initial concentra-
tion of linkers of type j,

c1
tot = c1 + c15 + c16 + c125 + c146 + c126 + c135 + c136 + c156

+ c1235 + c1236 + c1246 + c1346 + c1256 + c1356 + c1456

+ c12346 + c12356 + c12456 + c13456 + c123456, �8�

c2
tot = c2 + c25 + c26 + c125 + c236 + c126 + c235 + c246 + c256

+ c1235 + c1236 + c1246 + c2346 + c1256 + c2356 + c2456

+ c12346 + c12356 + c12456 + c23456 + c123456, �9�

c3
tot = c3 + c35 + c36 + c236 + c135 + c136 + c235 + c346 + c356

+ c1235 + c1236 + c1346 + c2346 + c2356 + c1356 + c3456

+ c12346 + c12356 + c13456 + c23456 + c123456, �10�

c4
tot = c4 + c46 + c146 + c246 + c346 + c1246 + c1346 + c2346 + c1456

+ c2456 + c3456 + c12346 + c12456 + c13456 + c23456 + c123456,

�11�

c5
tot = c5 + c15 + c25 + c35 + c125 + c135 + c156 + c235 + c256

+ c356 + c1235 + c1256 + c2356 + c1356 + c1456 + c2456

+ c3456 + c12356 + c12456 + c13456 + c23456 + c123456,

�12�

FIG. 4. �Color online� The subsets of the DNA cage �tetrahe-
dron� which can be formed in the absence of the particle. For each
topologically distinct diagram only one variety is shown.
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c6
tot = c6 + c16 + c26 + c36 + c46 + c146 + c236 + c126 + c136 + c156

+ c246 + c256 + c346 + c356 + c1236 + c1246 + c1346 + c2346

+ c1256 + c2356 + c1356 + c1456 + c2456 + c3456 + c12346

+ c12356 + c12456 + c13456 + c23456 + c123456. �13�

By solving these equations for the monomer concentrations
we can plot the melting profile �see Fig. 5�. The plot is for
the symmetrical case �16=�46=�15=�25=�26=�36=�35�.
The results are plotted in terms of the dimensionless variable
�Tm−T� /�T defined as

�Tm − T�
�T

=
�

T
− ln��ici

tot

4co
	 . �14�

Here �T is the width of the melting transition,

�T =
T

�S + ln��ici
tot/4co�

. �15�

Tm is the melting temperature �neglecting the trimers and
higher order structures� for which the fraction of rods in the

dimer phase F= �2C̄2� / �C̄1+2C̄2�=1 /2.

Tm =
�H

�S + ln��ici
tot/4co�

. �16�

The concentrations for of all the n-mers C̄n are

C̄1 = �
i

ci, �17�

C̄2 = �
j�i

cij , �18�

C̄3 = �
k�j�i

cijk, �19�

C̄4 = �
l�k�j�i

cijkl, �20�

C̄5 = �
m�l�k�j�i

cijklm, �21�

C̄6 = �
n�m�l�k�j�i

cijklmn, �22�

where each index runs over the set �1, 2, 3, 4, 5, 6�. For the
summations it is understood that the set of indices must form
a connected diagram. For example, the term c1234 does not

appear in the sum for C̄4 since the vertex architecture �see
Fig. 3� stipulates that this diagram represents two discon-
nected dimers, c12 and c34. The mass fraction of the n-mers
Mn is then defined as

Mn =
nC̄n

�k=1
6 kC̄k

. �23�

At low temperatures the dominant structure is the 6-mer,
which is the fully assembled cage except for the binding of
rod R4 at vertex D of the cage. With this information at hand,
we are now in a position to determine the melting profile for
the full system, DNA linkers together with the DNA grafted
nanoparticles.

IV. DNA-CAGED PARTICLES

In this section we determine the concentration of nanopar-
ticles decorated with DNA structures. We can determine the
concentration of particles decorated with DNA structures by
applying the same rules for the chemical potential as before.
For example, consider decorating a free particle with concen-
tration cp with the monomer c1. We have

T ln� cp

co
	 + T ln� c1

co
	 = T ln� cp1

co
	 + g̃1 �24�

The effective binding energy g̃1 has two contributions. The
first comes from the hybridization free energy g1 of the DNA
arms on the particle hybridizing with the ssDNA ends of rod
R1. As before these hybridization free energies can be de-
composed as a sum of contributions from joining two arms at
a vertex. Analogous to the definition of �, we let g denote the
average hybridization free energy for joining two rods at the
vertex, one of which came from the DNA grafted on the
nanoparticle surface.

The second contribution is an entropic contribution asso-
ciated with localizing the DNA structure on the surface of
the particle. Since there are Narms DNA strands grafted onto
the particle surface, there is a combinatorial factor associated
with the number of ways to make the first connection be-
tween the particle and the DNA structure. Let �
=Narms / �4�r2� be the average areal grafting density of DNA
on the nanoparticle surface for a particle of radius r, and h
�1 nm a localization length. The entropic contribution can
be estimated in terms of the concentration �=� /h which
relates g̃ to g in the following manner:
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FIG. 5. �Color online� The mass fraction for the partially as-
sembled cages which can form in the absence of the nanoparticle.
M1, M2, M3, M4, M5, and M6 are the mass fractions for the mono-
mers, dimers, trimers, tetramers, 5-mers, and 6-mer, respectively. In
the plot ci

tot=1 nM.
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g̃ = �2�R1
+ 2�R3

+ �R4
�g − T ln�Narms� �

co
	N−1� . �25�

The factor �Rj
=1 if rod Rj is present in the structure, and

�Rj
=0 otherwise. Here N is the number of vertices of the

cage to which the nanoparticle is bound. In our example case
we have N=2. Putting everything together we have

cp1 =
cpc1

co
exp�− g̃1

T
	 , �26�

g̃1 = 2g − T ln�Narms
�

co
	 . �27�

The same general procedure can be applied to decorating
the particles with all of the DNA structures considered in the
previous section, making sure to take into account the vertex
architecture. For example, we cannot decorate a particle with
the dimer c25 since at each of the vertices the DNA arms
which come from the particle cannot directly hybridize to the
arms which come from the dimer. The concentration of par-
ticles decorated with n-mers is cp

�n�,

cp
�0�  cp, �28�

cp
�1� = cp�

i

ci

co
exp�− g̃i

T
	 , �29�

cp
�2� = cp�

j�i

cij

co
exp�− g̃ij

T
	 , �30�

cp
�3� = cp �

k�j�i

cijk

co
exp�− g̃ijk

T
	 , �31�

cp
�4� = cp �

l�k�j�i

cijkl

co
exp�− g̃ijkl

T
	 , �32�

cp
�5� = cp �

m�l�k�j�i

cijklm

co
exp�− g̃ijklm

T
	 , �33�

cp
�6� = cp �

n�m�l�k�j�i

cijklmn

co
exp�− g̃ijklmn

T
	 . �34�

If cp
tot is the total initial particle concentration, we can write

the equation for particle conservation in the following form:

cp
tot = �

n=0

6

cp
�n� + O�cp

2� . �35�

This equation is then solved to determine the concentration
of free particles cp and hence the concentration for particles
decorated with DNA structures. The mass fraction mn for
particles decorated with n-mers is

mn =
cp

�n�

�k=0
6 cp

�k� . �36�

The results for the mass fraction are plotted �see Fig. 6� for
the case g=�. For low temperatures the dominant structure in
solution is our desired nanoblock, a DNA-caged particle.

It is of crucial interest for the experimental feasibility of
the proposal that the tetrahedrally caged particle is the domi-
nant structure close to room temperature. We can see from
Fig. 6 that the caged particle is the dominant equilibrium
structure for �Tm−T� /�T	−5. This in turn determines the
standard enthalpy �H and the standard entropy �S for the
hybridization between two DNA arms at the vertex. We find
that �H�−100 kcal /mol and �S�−270 cal K−1 mol−1. For
DNA rods with concentration ci

tot=1 nM in a 0.2 M NaCl
solution this gives Tm�35 °C and T�25 °C. This informa-
tion can be used to determine the number of DNA bases in
each arm of Fig. 2 �i.e., the length of the ssDNA ends on the
rods�. Using the average nearest neighbor parameters of �20�,
the DNA arms should be 28 base pairs long. Hence each of
the dsDNA arms of the four arm DNA junction is 14 base
pairs long.

The essential result is that there is an experimentally ac-
cessible regime for which the dominant equilibrium structure
is the DNA-caged particle. In this regime, �Tm−T� /�T	−5,
we do not expect the assembly of the DNA-caged particle to
be kinetically limited. The reason is that in this regime, even
in the absence of the particle the dominant structure is the
6-mer, which is then trivially converted into the DNA-caged
particle.

V. DNA-PARTICLE PARASITES

In this section we pause to discuss some other DNA-
particle structures �parasites� which could potentially de-
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FIG. 6. �Color online� The mass fraction mn for nanoparticles
decorated with n-mers. Note that the fully assembled tetrahedral
cage surrounding the particle, m6, is the dominant equilibrium
structure for low temperatures. For comparison the mass fraction of
the cage in the absence of the particles M6 is also plotted. In the
plot g=�.
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crease the overall yield of our nanoblock �see Fig. 7�. One
competing structure is the particle attached to the outside of
a DNA cage. In this case the particle can bind to at most
three of the tetrahedron vertices. As a result, the equilibrium
yield of this structure will be proportional to the yield of the
DNA-caged particle, but suppressed by a factor of the Bolt-
zmann weight for the missing connection exp� −g

T �, and thus
negligible for low temperature.

We should also consider the stability of our nanoblock
with respect to two particle structures, i.e., including terms of
order cp

2 in Eq. �35�. For example one can consider a particle
pair attached to the same DNA cage. Building such a struc-
ture does not necessarily cost binding energy with respect to
the DNA-caged particle. However, there is still a cost is as-
sociated with the loss in translational entropy of the free
particle T ln�

cp

co
�. As a result these particle pairs will be rela-

tively rare and should not decrease the overall yield of the
DNA-caged particle.

In principle, a particle may have several DNA cages as-
sembled around it. As it turns out, these are the most prob-
lematic of the competing structures. If we denote the concen-
tration of the cage c123456ccage and the free energy for the
particle binding to the cage g̃123456= g̃cage then concentration
of particles with m cages Cp

�m� is

Cp
�m� = cp� ccage

co
	m

exp�− m�g̃cage + �m − 1�
�
T

	 . �37�

Here 
 is an energetic parameter which characterizes the
interaction between two cages attached to the same particle.
Since the dsDNA rods �the cage edges� are charged, this
interaction is presumably dominated by the electrostatic re-
pulsion of the rods. Within the Debye-Huckel approximation
this problem has been treated �21–23�. The electrostatic en-
ergy E�R ,�� of two rods separated by a minimum center to
center distance R which make an angle � when viewed along
R is

E�R,��
T

= �2��B

l2 	 exp�− R�
sin �

. �38�

Here the rods have the same effective linear charge density
�= e

l , �B= e2

�T is the Bjerrum length, and −1=1 /�4��Bn is

the Debye screening length for monovalent counterions of
concentration n. Assuming that the electrostatic energy for
the cage-cage interactions can be expressed in terms of a
pairwise sum of contributions from rod-rod interactions we
have


 �
Nc

2

E�R,��� . �39�

Here the angular brackets denote the average, and Nc is the
number of rod-rod contacts between two cages. An energeti-
cally favorable orientation of the cages has Nc=6. To sup-
press the formation of particles with two cages, we require
the following ratio to be small:

Cp
�2�

Cp
�1� =

ccage

co
exp�− �g̃cage + 
�

T
	 � 1. �40�

The electrostatic energy can be quite significant. For perpen-
dicular orientations of the dsDNA rods Ref. �22� reports a
contact potential E�d , �

2 ��50 T �here d�2.4 nm is the ds-
DNA diameter� in n=0.005 M NaCl. At fixed temperature
and salt concentration, Eq. �40� imposes a condition on the
DNA linker concentration which must be met in order to
suppress the assembly of more than one cage around the
particle. If the DNA linker concentration is not too high, and
the salt concentration fairly low, the assembly of more than
one cage around the particle can be prevented.

VI. HIERARCHICAL SELF-ASSEMBLY

The DNA-caged nanoparticles in this paper are interesting
nanoblocks in a hierarchical self-assembly scheme. Part of
their usefulness stems from the fact that interactions between
nanoblocks are highly anisotropic. Recall that at each vertex
of the DNA cage there is a unique ssDNA sequence available
for hybridization. As a result two nanoblocks can be made to
interact in a very specific manner by introducing another set
of vertex-vertex DNA linkers. Moreover, the number of these
vertices is explicitly determined by the cage architecture,
which translates into a well defined “valence” for the inter-
actions between nanoblocks.

Here we discuss a particular hierarchical self-assembly
proposal where DNA-caged particles are the natural building
blocks. The basic proposal of the Voronoi scheme �see Fig.
8� is the following. Any target structure not necessarily crys-
talline can be represented as a discrete set of points, i.e., the
location of particles in the structure. With this set, one per-
forms the Voronoi decomposition �24�. The Voronoi cells for
the structure can be used to design the cages surrounding the
particles in the following manner. For any given particle,
place a vertex at the midpoint between that particle and each
of its Voronoi neighbors. In this way we map the target struc-
ture onto the set of caged particles, with certain pairs of
vertices to be connected. These vertices can be connected by
introducing a set of DNA linkers which perform the vertex-
vertex binding. By construction the target structure must be
the ground state of the system. What remains to be seen is
whether or not the target structure is favored kinetically. A
task for future research is a detailed consideration of this
question using Monte Carlo simulations.

FIG. 7. �Color online� Some of the undesired structures which
can form. �A� One particle attached to the outside of a cage. �B�
Two particles attached to the same cage. �C� One particle sur-
rounded by two cages.
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VII. CONCLUSIONS

In this paper we discussed a proposal to self-assemble
DNA-caged particles. The basic components are several
types of rodlike dsDNA linkers with ssDNA ends, and nano-
particles grafted with ssDNA. By designing the ssDNA se-
quences appropriately, the dsDNA rods self-assemble into a
cage surrounding the particle. The edges of the cage are ds-
DNA, and the vertices are multiarm DNA junctions. A par-
ticular implementation of this idea was discussed for the self-
assembly of tetrahedrally caged particles. We calculated the
equilibrium yield of the DNA-caged particles and discussed
their stability with respect to alternative structures. At low
temperature, the nanoparticle surrounded by one cage is the
dominant equilibrium structure. Although the calculations
were performed for a tetrahedral cage geometry, the ideas are
generally applicable to many types of polyhedral cages. Each
vertex of the cage with degree V can be constructed from a
V+1 arm DNA branched junction. Such junctions have been
constructed with up to 12 arms, which leads open the possi-
bility of much more complicated cages �25,26�. A natural
next step would be to consider a particle inside a DNA cube,
since the same vertex architecture proposed in this paper
would apply.

We concluded by discussing the usefulness of DNA-caged
particles in a hierarchical self-assembly proposal. The
Voronoi scheme maps the problem of self-assembling a par-
ticular target structure onto a set of caged particles for which
the target structure is the ground state. The experimental re-
alization of self-assembled DNA-caged particles would rep-
resent an important step towards realizing the technological
potential of DNA.
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APPENDIX: OVERLAP DENSITY ceff

In this appendix we calculate the overlap density cef f used
to determine the effective hybridization free energy for the
DNA structures in Fig. 4. It is helpful to consider the asso-
ciated problem of determining the probability distribution for
the end vector of a freely jointed chain made up of N linkers,
each of length L. The probability distribution for the chain
composed of one linker is simply.

�1�R� =
��R − L�

4�L2 . �A1�

Therefore for a chain composed of N such linkers we have

�N�R� = �
j=1

N � d3r j�1�r j��3��
i=1

N

ri − R	 . �A2�

The inverse Fourier transform of the probability distribution
has a particularly simple form �27�,

�̃N�k� =� d3R exp�ik · R��N�R� = � sin�kL�
kL

	N

, �A3�

�N�R� = �2��−3� d3k exp�− ik · R��̃N�k� . �A4�

Working in spherical coordinates, performing the angular in-
tegration yields

�N�R� = �2��−3�
0

�

k2� sin�kL�
kL

	N

dk� d� exp�− ikR cos ��

= �2��−2 2

R
�

0

�

k sin�kR�� sin�kL�
kL

	N

dk

=
1

2�2L3�
0

�

u2j0�Ru

L
	�j0�u��Ndu . �A5�

Here j0�z�= sin z
z is the spherical Bessel function �28� of order

0.
We are now in a position to determine the overlap density

cef f for the triangle structure. Of particular interest for this
calculation is �29,30�

�2�R� =
��2L − R�

8�L2R
. �A6�

Here ��x� is the Heaviside step function. The overlap density
for the triangle is then calculated as

cef f =� d3R� d3r�2�R��1�r��3�R − r�

=
1

8�L2

1

4�L2 � d3R� d3r
��2L − R�

R
��r − L��3�R − r�

=
1

32�2L4 � d3r
��2L − r�

r
��r − L� =

1

8�L3 . �A7�

There are two remaining overlap densities which need to
be calculated. One of them is for forming an equilateral par-

FIG. 8. �Color online� A simple example of the Voronoi scheme
in two dimensions.
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allelogram, i.e., a diamond. In Fig. 4 this structure is the third
structure in the tetramer row. Forming this structure can be
viewed as joining the ends of two chains, each of which is
composed of two links,

cef f =� d3R� d3r�2�R��2�r��3�R − r�

= � 1

8�L2	2� d3R� d3r
��2L − R�

R

��2L − r�
r

�3�R − r�

=
1

64�2L4 � d3r
��2L − r�

r2 =
1

8�L3 . �A8�

Alternatively, one can calculate the overlap density for the
diamond structure as

cef f =� d3R� d3r�3�R��1�r��3�R − r� =
1

8�L3 . �A9�

This is simply viewing the diamond as joining a chain of
three links with a chain of one link. The results are the same,
as they must be.

The remaining overlap density to be calculated is associ-
ated with making the last connection in the tetrahedron. As-
sume that all the connections have been made, except for the
connection between rod R4 and vertex A. Taking vertex D as
the origin, the position of vertex A is the end vector of a two
segment chain, with each segment having length l= L�3

2 . With
one end of rod R4 fixed at vertex D, the other end must
connect to vertex A,

cef f =� d3R� d3r�2�R��1�r��3�R − r�

=
1

8�l2

1

4�L2 � d3R� d3r
��2l − R�

R
��r − L��3�R − r�

=
1

32�2l2L2 � d3r
��2l − r�

r
��r − L� =

1

8�l2L
=

1

6�L3 .

�A10�
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